Anna Cabré
Climate physicist, oceanographer and research consultant at the University of Pennsylvania
Air can hold more water vapour when it is warmer. This results in a more intense water cycle (more intense rainfall, more extreme droughts, etc.) in a warmer world. Extreme rainfall is particularly damaging in places with high population density, relief (mountains) and, above all, in places that have experienced drought episodes just before (also more frequent with climate change), which lower the quality of the soil and its absorption capacity, as well as in places that already use a lot of soil for agriculture or in places with infrastructure that is poorly prepared for water extremes.
In addition, glaciers are melting in the high mountains and there is less and less snow, both of which are crucial for the stability of river flows and very relevant for the lives of many, many people at low altitudes as well. This study says that the transition from solid (snow) to liquid (rain) precipitation expected at high altitudes is associated with a more pronounced increase in extreme rainfall than in the rest of the world, which makes sense, but has now been quantified. This is particularly relevant for climate change adaptation in mountainous areas, especially in vulnerable countries such as Nepal that are downhill from the Himalayas.