Ernesto Rodríguez Camino
Senior State Meteorologist and president of Spanish Meteorological Association
It is well known that one of the effects of climate change is the increase in the intensity and frequency of extreme precipitation events, with consequent effects on both ecosystems and infrastructure. Extreme precipitation events can occur in the form of both rain and snow, the former being particularly dangerous because of the almost instantaneous runoff that can lead to flooding. However, until now, extreme precipitation events have not been studied separately for rain and snow. This study analyses for the first time the effect of climate change - both observed and projected under different scenarios - on the intensity of precipitation events in liquid and solid phases separately.
The novelty and main conclusion of this work is that liquid-phase (rain) precipitation extremes - which have more negative impacts than the corresponding solid-phase (snow) ones - in regions of the Northern Hemisphere amplify their intensity on average by up to 15 % for each degree of warming, which is double what had been expected so far due to the increased water vapour holding capacity in warmer air, with this amplification being greater in areas with high altitudes than at low altitudes. This greater amplification of rainfall extremes due to climate change in mountain areas in the northern hemisphere will require revised adaptation plans to adequately protect mountain environments and downstream regions, which are home to approximately 26% of the world's population. As a counterpart to the increase in liquid-phase precipitation extremes, there will be a reduction in solid-phase precipitation extremes, with a consequent negative impact on the regulation of water resources, which is critically dependent on water storage in mountain areas in the form of snow.
It is well known that mountain areas with significant snowpack are critical areas because of the significant impacts and vulnerability they experience due to climate change. This work highlights an aspect that has been little studied until now, namely the greater amplification in these areas of extreme rainfall at the expense of extreme precipitation in the form of snow, leading to greater risks of flooding downstream of the river courses that originate in these mountainous areas. Flood risks are further increased if the areas are affected by forest fires that reduce vegetation cover and lead to increased and steeper runoff, heavy soil erosion and possibly earth movements.